Numerical Solutions of Fractional Order Autocatalytic Chemical Reaction Model
نویسندگان
چکیده
منابع مشابه
Numerical solutions for fractional reaction-diffusion equations
Fractional diffusion equations are useful for applications where a cloud of particles spreads faster than the classical equation predicts. In a fractional diffusion equation, the second derivative in the spatial variable is replaced by a fractional derivative of order less than two. The resulting solutions spread faster than the classical solutions and may exhibit asymmetry, depending on the fr...
متن کاملQualitative analysis of an autocatalytic chemical reaction model with decay
In this paper, we revisit a reaction–diffusion autocatalytic chemical reaction model with decay. For higher-order reactions, we prove that the system possesses at least two positive steady-state solutions; hence, it has bistable dynamics similar to the system without decay. For the linear reaction, we determine the necessary and sufficient condition to ensure the existence of a solution. Moreov...
متن کاملMultiple solutions of the nonlinear reaction-diusion model with fractional reaction
The purpose of this letter is to revisit the nonlinear reaction-diusion modelin porous catalysts when reaction term is fractional function of the concen-tration distribution of the reactant. This model, which originates also in uidand solute transport in soft tissues and microvessels, has been recently givenanalytical solution in terms of Taylors series for dierent family of reactionterms. We a...
متن کاملDynamics of a Reaction-diffusion System of Autocatalytic Chemical Reaction
The precise dynamics of a reaction-diffusion model of autocatalytic chemical reaction is described. It is shown that exactly either one, two, or three steady states exists, and the solution of dynamical problem always approaches to one of steady states in the long run. Moreover it is shown that a global codimension one manifold separates the basins of attraction of the two stable steady states....
متن کاملNumerical Solutions of a Variable-Order Fractional Financial System
The numerical solution of a variable-order fractional financial system is calculated by using the Adams-Bashforth-Moulton method. The derivative is defined in the Caputo variable-order fractional sense. Numerical examples show that the Adams-Bashforth-Moulton method can be applied to solve such variable-order fractional differential equations simply and effectively. The convergent order of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi
سال: 2016
ISSN: 1308-6529,1300-7688
DOI: 10.19113/sdufbed.24679